(2066)

B. Tech 4th Semester Examination

Signals & Systems (NS)

EE-223

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, Selecting one question from each of the sections A, B, C & D. Section E is compulsory

SECTION - A

- Define signal. Discuss basic continuous time signals, also differentiate energy and power signals. (20)
- 2. (a) Sketch the following signal

x(t)=A [u(t+a)-u(t-a)] for a>0

Also determine whether the given signal is a power signal or an energy signal or neither. (10)

(b) What do you mean by interconnections of systems?

Define systems with and without memory. (10)

SECTION - B

- 3. (a) State and explain the convolution integral for continuous time LTI systems. (10)
 - (b) List various properties of Liner time invariant systems in detail with suitable example. (10)

4. In this figure a periodic rectangular waveform is shown, obtain its Fourier series representation. (20)

SECTION - C

5. (a) Determine the Fourier transform of signal

$$x(t)=t \cos(at)$$
 (10)

(b) Define convolution property of CTFT. (10)

- (a) Explain the linearity property of discrete-time Fourier transform. (10)
 - (b) Find the Fourier transform of the signal.

$$x(t)=e^{-A(t)}. Sgn(t)$$
 (10)

SECTION - D

- Given the difference equations of two second order causal and stable LTI System establish whether or not the step response of system is oscillatory.
 - (a) y(n)+y(n-1)+1/4 y(n-2) = x(n)
 - (b) y(n)-y(n-1)+1/4 y(n-2) = x(n) (20)
- 8. List and explain properties of Fourier transform with suitable example. (20)

SECTION - E

- 9. (a) Define Unit ramp signal.
 - (b) Explain causal and non-causal systems.
 - (c) Calculate the Fourier transform of unit step function.
 - (d) Differentiate Even and Odd Signals.
 - (e) Define Periodic and Aperiodic Signals.
 - (f) Write short notes on Dirichlets conditions for Fourier series.
 - (g) Define decimation.
 - (h) Define linear and nonlinear phase.
 - (i) State Sampling theorem.
 - (j) What is the condition for stable system? (2×10=20)